
Three particles in a box: 
Mapping finite-volume 

spectrum to S-matrix
Maxwell T. Hansen

Fermi National Accelerator Laboratory
University of Washington, Seattle

Supported by the Fermilab Fellowship in Theoretical Physics

to appear
MTH, Stephen R. Sharpe

August 29, 2013



Max Hansen (UW/FNAL) 2

In 2012 LHCb and CDF reported surprisingly high CP 
asymmetry in

D0 → π+π− D0 → K+K−

(this has recently reduced to naive SM expectations)

It turns out that the theoretical tools for extracting 
D decays from Lattice QCD do not yet exist.

We were motivated to develop the required formalism.

Numerical Lattice QCD is the only systematic method 
for calculating non-perturbative matrix elements.

So it is natural to ask whether it can be applied here.

LHCb, PRL 108, 111602 (2012)                 CDF, PRL 109, 111801 (2012)
LHCb, PLB 723 (2013) 33-43
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Extracting D decays is also relevant for neutral D meson mixing.

D0 ←→ D0

More precisely, mixing splits into short and long distance 
contributions:

HW D0D0
HWHW D0D0

short distance long distance

The formalism for extracting D decays is also needed for extracting 
the long distance contribution.

π

π
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�0|K(x1)K(x2)HW (x3)D(x4)|0�

�0|π(x1)π(x2)HW (x3)D(x4)|0�

Why is this difficult?
Lattice QCD can be used to obtain Euclidean correlators 

numerically:

However, it is not possible to analytically continue 
these numerical functions from Euclidean to Minkowski time.

In addition taking limits on Euclidean correlators directly 
will not give the decay amplitude.

One needs a more clever approach.

Maiani, L. & Testa, M. PLB 245, 585-590 (1990)
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Indeed such a clever approach was worked out by 
M. Lüscher and L. Lellouch for

K → ππ

First M. Lüscher found a method to determine

Then M. Lüscher and L. Lellouch used perturbation theory in 
weak interaction to derive a method for extracting

amplitude from Lüscher’sK → ππ ππ → ππ result

ππ → ππ from lattice simulations.

Lüscher, M. Nucl. Phys B354, 531-578 (1991)

Lellouch, L. & Lüscher, M. Commun. Math. Phys. 219, 31-44 (2001)

Highly nontrivial since same Euclidean/
Minkowski issue is relevant here.
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Can we generalize Lellouch-Lüscher method to extract

D0 → π+π− D0 → K+K−

First step is to generalize                extraction.  
To handle D decays, we must determine how to extract all 

strongly coupled channels that are open at..................................

ππ → ππ

MD ≈ 1865MeV

ππ → ππ ππ → KK
ππ → ππππ

KK → ππππππ

There exists no formalism to extract scattering amplitudes from 
Lattice QCD for states with more than two hadrons.

ππππ → ππππ

?
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So, what is Lüscher’s method for extracting                      ?ππ → ππ

�0|π(x1)π(x2)π(x3)π(x4)|0�
Still starts with four pion interpolator,

But now recall this interpolator is calculated in a finite-volume.

Naively one would seek to remove finite-volume effects.

Instead we embrace finite-volume theory and
use this correlator to determine finite-volume spectrum.

Lüscher found a method for mapping finite-volume 
spectrum to elastic pion scattering amplitude.
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Lüscher’s method has led to large body of work extracting 
phase shifts from Lattice QCD.

GIVE SOME EXAMPLES HERE

mπ = 391MeV

π
π
→

π
π

ρ resonance

from Dudek, Edwards, Thomas in Phys.Rev. D87 (2013) 034505
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This is a necessary first step towards
D0 → π+π− D0 → K+K−

from Lattice QCD
In this talk we focus on extracting ππ → ππ

πππ → πππ

More generally it is needed for any decay/scattering with open 
channels containing more than two hadrons.

Lattice QCD

ππ → ππ
πππ → πππ

D0 ←→ D0long distance part of
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Particle content
Single scalar, mass m

all results for
identical scalars

Interactions governed by local, relativistic field theory 
with      symmetry

(For pions in QCD this is G-parity)

Theory is otherwise arbitrary...
Include all operators with even number of fields

Make no assumptions about couplings

10

Z2
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Finite volume

L

L

L

cubic, spatial volume 
(extent   )

periodic boundary
conditions

time direction infinite and Minkowski

Take    large enough to ignore e−mL
dropped 

throughout!

Take space to be continuous

lattice spacing 
set to zero

11

�p ∈ (2π/L)Z3

L

L
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L

L

L

12

Finite volume Infinite volume

iMn→m

Discrete energy 
spectrum

Scattering 
amplitudes

E0(L)

E1(L)

E2(L) Determine mapping 
between theories 
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CL(E, �P ) ≡
�

L
d4x ei(Ex0−�P ·�x)�0|Tσ(x)σ†(0)|0�

Determine relation using finite-volume correlator
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CL(E, �P ) ≡
�

L
d4x ei(Ex0−�P ·�x)�0|Tσ(x)σ†(0)|0�

Determine relation using finite-volume correlator

periodic interpolator
(specify quantum numbers)

energy     , momentum

introduce CM energy

E �P = (2π/L)�nP

E∗2 ≡ E2 − �P 2
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CL(E, �P ) ≡
�

L
d4x ei(Ex0−�P ·�x)�0|Tσ(x)σ†(0)|0�

Determine relation using finite-volume correlator

periodic interpolator
(specify quantum numbers)

energy     , momentum

introduce CM energy

E �P = (2π/L)�nP

E∗2 ≡ E2 − �P 2

nonzero momentum in 
finite-volume frame
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CL(E, �P ) ≡
�

L
d4x ei(Ex0−�P ·�x)�0|Tσ(x)σ†(0)|0�

Determine relation using finite-volume correlator

We calculate                 to all orders in perturbation theory 
and determine condition of divergence.

Result depends only on on-shell scattering amplitudes

At fixed          poles in       give finite-volume spectrumL, �P , CL

CL(E, �P )

periodic interpolator
(specify quantum numbers)

energy     , momentum

introduce CM energy

E �P = (2π/L)�nP

E∗2 ≡ E2 − �P 2

nonzero momentum in 
finite-volume frame
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First, two particles in a box
Require E∗ < 4m

give interpolator even-
particle quantum numbers

Then only two-to-two scattering enters result

CL(E, �P ) ≡
�

L
d4x ei(Ex0−�P ·�x)�0|Tσ(x)σ†(0)|0�

iM2→24m

E∗
0 (L, �P )

E∗
1 (L, �P )

E∗
2 (L, �P )

Following derivation is from Kim, Sachrajda and Sharpe. 
Nucl. Phys. B727, 218-243 (2005)
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CL(E, �P ) ≡ +

+ + + · · ·

σ†

σ†

σ†

σ†

σ

σ

σ

σ

18

fully dressed 
propagators

infinite set of terms
no assumed suppression

spatial loop momenta 
are summed

1

L3

�

�k∈(2π/L)Z3

�
dk0

2π
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CL(E, �P ) ≡ +

+ + + · · ·

σ†

σ†

σ†

σ†

σ

σ

σ

σ

19

fully dressed 
propagators

infinite set of terms
no assumed suppression

Key observation:
If particles in summed loops cannot all go on shell, then replace

spatial loop momenta 
are summed

1

L3

�

�k∈(2π/L)Z3

�
dk0

2π

1

L3

�

�k

−→
�

d3k

(2π)3
difference is order

e−mL
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CL(E, �P ) ≡ +

+ + + · · ·

σ†

σ†

σ†

σ†

σ

σ

σ

σ

20

1

L3

�

�k

−→
�

d3k

(2π)3

Since                , only two particles with 
total momentum           can go on-shell

E∗ < 4m
(E, �P )
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+

+ + + · · ·

σ†

σ†

σ†

σ†

σ

σ

σ

σ

CL(E, �P ) = these loops are now
integrated
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+

+ + + · · ·

σ†

σ†

σ†

σ†

σ

σ

σ

σ

CL(E, �P ) = these loops are now
integrated

iKσ† σ

+ · · ·σ† σ+ + + · · ·
�

+

�

+

+ · · ·+

σ† σ σ† σiK

iK iKσ† σ

CL(E, �P ) =

CL(E, �P ) =

infinite-volume
Bethe-Salpeter kernel
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Next we introduce an important identity

on-shell

σ∗(k̂∗) ≡ σ(ωk,�k)
���
on−shell

1

L3

�

�k

�

�k

= +σ† σ σ† σ σ† σ

off-shell

k
σ(k0,�k)

P − k
=σ

23

+

+ · · ·+

σ† σ σ† σiK

iK iKσ† σ

CL(E, �P ) =

    parametrizes two on-shell 
particles with fixed              .
k̂∗

(E, �P )
means CM frame∗

finite-volume
residue
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Next we introduce an important identity
1

L3

�

�k

�

�k

= +σ† σ σ† σ σ† σ

24

+

+ · · ·+

σ† σ σ† σiK

iK iKσ† σ

CL(E, �P ) =

σ† σ = σ∗
��,m�iF��,m�;�,mσ†∗

�,m = σ∗iFσ†∗

√
4π σ∗

�,m Y�,m(k̂∗) = σ∗(k̂∗)where

and      is a known matrix, depending only on kinematicsF

on-shelloff-shell

finite-volume
residue
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+

+ · · ·+

σ† σ σ† σiK

iK iKσ† σ
+σ† σ σ† σ

25

CL(E, �P ) =

iK iKiK iKσ† σ σ† σ σ† σ σ† σ+ + +

F

F

F F F F
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+

+ · · ·+

σ† σ σ† σiK

iK iKσ† σ
+σ† σ σ† σ

26

CL(E, �P ) =

iK iKiK iKσ† σ σ† σ σ† σ σ† σ+ + +

Now regroup by number of F cuts

F

F

F F

A�A

CL(E, �P ) = C∞(E, �P )
� �

+ + · · ·+ σ σiK
� �

+ + · · ·σ† iKσ†

zero F cuts one F cut

F

these infinite-volume 
quantity do not 

appear in final result

F F
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+

+ · · ·+

σ† σ σ† σiK

iK iKσ† σ
+σ† σ σ† σ

27

� �
+ + · · · + · · ·+

iM

A�A iK iK iK

CL(E, �P ) =

iK iKiK iKσ† σ σ† σ σ† σ σ† σ+ + +

Now regroup by number of F cuts

F

F

F F

CL(E, �P ) = C∞(E, �P )+

two F cuts

A�A

F F

F F

F

As Promised!
the infinite-volume, on-shell two-to-two 

scattering amplitude
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++

+ + · · ·

iM

iM iM

A�A�

A�

A

A

A

CL(E, �P ) = C∞(E, �P )

CL(E, �P ) = C∞(E, �P ) +
∞�

n=0

A�iF [iM2→2iF ]nA

F F F

F F F
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++

+ + · · ·

iM

iM iM

A�A�

A�

A

A

A

CL(E, �P ) = C∞(E, �P )

CL(E, �P ) = C∞(E, �P ) +
∞�

n=0

A�iF [iM2→2iF ]nA

CL(E, �P ) = C∞(E, �P ) +A�iF
1

1− iM2→2iF
A

no poles no poles
no poles

F F F

F F F

diverges whenever                                 diverges iF
1

1− iM2→2iF
CL(E, �P )



Max Hansen (UW/FNAL)

4πY��,m�(k̂�∗) iM2→2;��,m�;�,m Y�,m(k̂∗) ≡ iM2→2(k̂
�∗, k̂∗)

30

Two-particle result
At fixed           the finite-volume spectrum                  is the 

set of solutions to

where

∆L,P (E) = det[1− iM2→2iF ] = 0

iM2→2;��,m�;�,m

iF��,m�;�,m ≡ 1

2

�
1

L3

�

�k

−
�

�k

�
i4πY��,m�(k̂∗)Y ∗

�,m(k̂∗)

2ωk2ωP−k(E − ωk − ωP−k + i�)
iF��,m�;�,m

with ω2
k = �k2 +m2

(L, �P ) E1, E2, · · ·
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First note   iM2→2;��,m�;�,m ∝ δ�,��δm,m�

∆L,P (E) = det[1− iM2→2iF ] = 0 ...is it useful?

By contrast,                  .
is not diagonal

iF��,m�;�,m

rotational invariance of 
infinite-volume theory

rotation symmetry broken by 
finite-volume

partial wave 
mixing

iM2→2;00;00(E
∗
n) = [iF00;00(En, �P ,L)]−1

Nonetheless, if                     is the dominant contribution
then only need to keep           .iF00;00

iM2→2;00;00
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Now, three particles in a box

give interpolator odd-particle 
quantum numbers

Then two-to-two and three-to-three scattering enters result

CL(E, �P ) ≡
�

L
d4x ei(Ex0−�P ·�x)�0|Tσ(x)σ†(0)|0�

iM2→2

E∗
0 (L, �P )

E∗
1 (L, �P )

E∗
2 (L, �P )

Require m < E∗ < 5m

iM3→3

5m

m



Max Hansen (UW/FNAL) 33

CL(E, �P ) = + + + · · ·

+

+

+

+

+ · · ·

+ + + · · ·

+ · · ·

+ · · ·

+

+ +

+

+ · · ·

Top line can be summed following two-particle case. 
But this approach does not easily generalize to include other diagrams.

Central difficulty comes from diagrams with 
two-to-two insertions switching to different pair
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CL(E, �P ) = + + + · · ·

+

+

+

+

+ · · ·

+ + + · · ·

+ · · ·

+ · · ·

+

+ +

+

+ · · ·

Still, it is possible to sum all diagrams.
It is not, however, possible to explain the full story here.

Instead, focus here on two parts of derivation.
Each part contains an important lesson, needed to understand the final 

result.
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First Part:  Sum “no-switch” diagrams

call the bottom momentum 
important finite-volume corrections only arise from               .

C(1)
L ≡ + + + · · ·+

k0 = ωk

k
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C(1)
L =

First Part:  Sum “no-switch” diagrams

call the bottom momentum 
important finite-volume corrections only arise from               .

C(1)
L ≡ + + + · · ·+

1

L3

�

�k

1

2ωk

� �
+ + + · · ·+

k0 = ωk

bottom propagator replaced with............... 
and pulled out front

1/(2ωk)

k
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C(1)
L =

First Part:  Sum “no-switch” diagrams

call the bottom momentum 
important finite-volume corrections only arise from               .

now substitute

and rearrange by number of F insertions
C(1)

L = C(1)
∞

+ + + · · ·+

�
1

L3

�

�k

1

2ωk

�
+

C(1)
L ≡ + + + · · ·+

1

L3

�

�k

1

2ωk

� �
+ + + · · ·+

k0 = ωk

bottom propagator replaced with............... 
and pulled out front

1/(2ωk)

F

= +

= + + + + · · ·=
= iM2→2

k
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�
A
�
=

iF

2ωL3

1

1− iM2→2iF
C(1)

L = C(1)
∞ +

Deduce

think of this as a new cut, like F it puts neighbors on-shell

A
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iFk�,��,m�;k,�,m = δk,k� iF��,m�;�,m(E − ωk, �P − �k)

iMk�,��,m�;k,�,m = δk,k� iM��,m�;�,m(E − ωk, �P − �k)

[finite-volume momentum]x[angular momentum]

�k = �k� ∈ (2π/L)Z3

�
A
�
=

iF

2ωL3

1

1− iM2→2iF

Finite volume residue terms (such as             ) are of the form:

(row vector)x(matrix)x(column vector), acting on product space

C(1)
L = C(1)

∞ +

Deduce

think of this as a new cut, like F it puts neighbors on-shell

Main Lesson From Part One

A

For example,       is built from
�
A
�
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[finite-volume momentum]x[angular momentum]

�
A
�
=

iF

2ωL3

1

1− iM2→2iF

Finite volume residue terms (such as             ) are of the form:

(row vector)x(matrix)x(column vector), acting on product space

C(1)
L = C(1)

∞ +

Deduce

think of this as a new cut, like F it puts neighbors on-shell

Main Lesson From Part One

A

â∗ −→ �,m
(E − ωk, �P − �k)

(ωk,�k)
BOOST

Observe that             parametrizes three particles with fixed�k, �,m (E, �P )
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Second part:  Sum “one-switch” diagrams

+ · · ·

+ +

+

C(2)
L =

stands for terms that
modify endcaps of ......

In this case we have two “spectator-momenta” 
(momenta that do not appear in two-particle loops)

A A
C(2)

L = C(2)
∞ + + · · ·

iM(2,unsym)
3→3;k�,��,m�;k,�,m ≡

�,m

�k

�k�

��,m�

Between    factors we have first contribution to three-to-three amplitude

C(1)
L

A
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�k�

iM(2,unsym)
3→3;k�,��,m�;k,�,m ≡

�,m

�k

��,m�

Certain external moment put the intermediate propagator on-shell

This implies that this diagram, and indeed also the full
................. has physical poles above threshold

nothing to do with bound states

Main Lesson From Part Two

iM3→3

This is a problem because the amplitude is symmetric in external momenta

��,m�
�,m

iM3→3;k�,��,m�;k,�,m
!
⊃

But this would demand decomposing a singular function in Y�,m
The decomposition is not valid!
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Resolution:  Introduce

...................... is finite: 
Can decompose in harmonics and truncate expansion at low energies

It makes sense to recover a singularity-free quantity from 
finite-volume spectrum. Then add singular terms back in.

iM(2,unsym)
df,3→3 ≡ iM(2,unsym)

3→3 − iM2→2SiM2→2

S

−

The approach of separating out singularities like this was first suggested 
over 40 years ago (Rubin et al.  PR 146-6 (1966))

represents simple 
kinematic pole factor

on-shell

iMdf,3→3
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This pattern of separating out singularities persists to all orders

iMdf,3→3 ≡ iM3→3 −
�
iM2→2SiM2→2 +

�
iM2→2SiM2→2SiM2→2 + · · ·

�

S S S

This definition arises from analyzing all two-to-two diagrams

iMdf,3→3;k�,��,m�;k,�,m

is the observable to extract from the spectrum.

Define

infinite series built
with factors of...................SiM2→2

only on-shell
amplitudes here
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Review Lessons

â∗ −→ �,m
(E − ωk, �P − �k)

(ωk,�k)
BOOST

1. In the three particle case, all matrices act on product space

[finite-volume momentum]x[angular momentum]

�k, �,mIn other words, they have indices

needed to describe 
three particles

2. Singularities in....................invalidate decomposition in............. iM3→3 Y�,m

Resolution is to introduce iMdf,3→3;k�,��,m�;k,�,m

+ + · · ·
� �

S S S

iMdf,3→3 ≡ iM3→3−

This object arises naturally in finite-volume analysis.
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iFk,k� ≡ δk,k�
1

2

�
1

L3

�

�a

−
�

�a

�
i4πY (â∗)Y ∗(â∗)

2ωa2ωP−k−a(E − ωk − ωa − ωP−k−a + i�)

iGk,p ≡ 1

2ωpL3

i4πY (p̂∗)Y ∗(k̂∗)

2ωP−p−k(E − ωp − ωk − ωP−p−k)

iF3 ≡ 1

2ωL3

�
−(2/3)iF +

1

[iF ]−1 − [1− iMiG]−1iM

�

∆L,P (E) = det[1− iMdf,3→3iF3] = 0

Three-particle result
At fixed           the finite-volume spectrum                  is the 

set of solutions to

where

(L, �P ) E1, E2, · · ·

and

Here harmonic indices are left implicit.
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iF3 ≡ 1

2ωL3

�
−(2/3)iF +

1

[iF ]−1 − [1− iMiG]−1iM

�

...is it useful?∆L,P (E) = det[1− iMdf,3→3iF3] = 0

Following two particle case, suppose         .iMdf,3→3

can be approximated to be isotropic (only depends on     )E∗

iMdf,3→3(E
∗
n) = [iF3,iso(En, �P ,L)]−1

iF3,iso ≡
�

�k,�p

iF3;k,p
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Conclusions

L

L

L

We have presented our result for extracting 
three-to-three scattering from finite-volume spectrum.

This is a necessary first step towards
D0 → π+π− D0 → K+K−

D0 ←→ D0long distance part of

More generally it is needed to extract any decay or scattering 
amplitude with more than two hadrons from Lattice QCD.
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Future work and Applications

L

L

L

Generalize the Lellouch-Lüscher method, to find Lattice 
method for extracting weak decay into three particles

Identify as many channels as possible and begin program of 
extracting observables.

K −→ πππ

Generalize mapping to accommodate four-particle states.

Generalize to accommodate non-identical and non-
degenerate particles as well as spin.


